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Abstraci The non-isaspectral symmetries of a general class of integrable hierarchies are found 
by generalizing the GaJilean and scaling symmetries of the Korteweg-de Vries equation and its 
hierarchy. The symmetries arise in a veq natural way from the semi-direct product m c t u r e  
of the Virasoro algebra and the affine Kac-Moody algebra underlying the consvuction of the 
hierarchy. In particular. the generalors of lhe symmetries are shown lo satisfy a subalgebra of 
the Vimoro algebra When a tawfunction formalism is available, the infinitesimal symmetries 
act directly on the tau-functions as moments of V i o m  currents. Some comments are made 
regarding the role of the non-isospectral symmetries and the form of the string equations in 
matrix-model formulations of quantum gravity in two dimensions and related systems. 

1. Introduction 

Since the discovery of the soliton solution of the Korteweg-de Vnes (KdV) equation 

art I a3u 3 au 
at 4ax3 2 ax + -u- - - __ - 

much effort has been devoted to elucidating the nature of the integrability of soliton 
hierarchies (see [ I ]  for a nice discussion on the history of the theory of soliton equations, 
and 121 for an introduction to integrable models). One of the more important and surprising 
developments has been the recognition of the deep connection existing between integrable 
hierarchies of nonlinear differential equations and infinite-dimensional Lie algebras. This 
connection manifested itself in two apparently unconnected approaches. 

In the ‘tau-function’ approach, pioneered by the Japanese school [3,4], the equations 
are cast in a particular bilinear or Hirota form by the use of a special set of variableethe 
tau-functions. For instance, the original variable and the tau-function of the KdV equation 
are related-in standard convention-by the well known formula 

It was clear, in the original work of [4], that the affine Kac-Moody algebras play a central 
role in this approach but it was made even clearer by Kac and Wakimoto 151. In this last 

5 e-mail address: hollow@suryalI .cem.ch (On leave from: Department of Physics, University College of Swansea, 
Swansea SA2 SPP, UK.) 
11 e-mail address: miramont@cemvm.cem.ch 
q e-mail address: joaquin@egaesl.usc.es 

0305-4470/94/l34629i16$19.50 @ 1994 IOP Publishing Ltd 4629 



4630 

work, the authors constructed integrable hierarchies of equations in Hirota form associated 
with vertex-operator representations of affine Kac-Moody algebras. 

The other approach is inspired by the seminal work of Drinfel’d and Sokolov [61. 
In their construction, the central objects are gauge fields in the loopalgebra of a finite 
Lie algebra and the equations are the conditions of zero-curvature on these gauge fields. 
In the original work of 161, the authors make use of the ‘principal’ gradation of the 
loop-algebra in an essential way; in particular, the construction involves the ‘principal 
Heisenberg subalgebra’. On the other hand, it is well known that the affine Kac-Moody 
algebras have other inequivalent Heisenberg subalgebras [7,8], an observation that was 
exploited in [9] (see also [lo]) to construct more general integrable hierarchies. In fact, 
it was shown in [I I] that it is not necessary to be restricted to the loop-algebra and the 
constructions of the hierarchies are completely representation independent; in particular, 
they are independent of the centre. Moreover, when the affine Kac-Moody algebra has 
a vertex-operator representation the zero-curvature hierarchies can be written in terms of 
tau-functions [ l l ]  and hence a bridge can be established between the two approaches. 

The purpose of this paper is to complete the description of the zero-cwature integrable 
hierarchies of [9] by discussing their ‘additional’ or ‘non-isospectral’ symmetriest. In 
this context, a ‘symmetry’ is some transformation that relates one solution of an equation 
with another solution of the same equation. Recall that, for example. the KdV equation 
has an infinite set of commuting symmetries, infinitesimally generated by the infinite set 
of conserved Hamiltonians. Hence, because the existence of an infinite set of conserved 
Hamiltonians is a necessary condition for integrability, any integrable nonlinear differential 
equation has an infinite set of commuting symmetries; these are actually the ‘isospectral’ 
symmetries. The corresponding infinite set of infinitesimal generators are nothing but the 
commuting flows defining the ‘integrable hierarchy’ associated with the original nonlinear 
differential equation. In the case of the KdV equation, the general form of these flows is 
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au 

ata+] 
-- - (U, a,u, a$, . . .) 

where tl x.  t3 = t and Pk is a polynomial function of U and its x-derivatives; the original 
KdV equation corresponding to k = 1. For each integer k > I, (1.3) generates a symmetry 
of the KdV equation in the sense that if U is a solution then so is U + cau/atZx+, 6 << 1. 

However, the group of symmetries of the KdV equation is known to be much bigger 
still, since there exist the Galilean and scaling transformations 

u(x ,  t )  H q x ,  t )  = u(x + ut,  t )  + $U 
u(x ,  t )  H K(x, t )  = e2u(e‘x, e3’1) 

(1.4) 

respectively, for arbitrary values of U and r .  When U and r are infinitesimal, one can write 
them as 

2u 3 au 
ii(x, t )  - u ( x ,  t )  = - 3 (-I- 2 ax + 1) 

u ( x , I ) - - u ( x . ~ )  = r  - 
t A symmetry is called either ‘isospecual‘ or ‘non-hospectral‘ according to whether it preselves or changes the 
specwm of the auxiliaxy linear problem associated with the nonlinear quation. respectively [12,13]. 
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Notice that, in contrast to the flows defined by (1.3). the right-hand sides of (1.5) and (1.6) 
involve x and t explicitly in addition to U and its x-derivatives (hence, the flows cannot 
be Hamiltonian). (1.5) and (1.6) are the first two generators of the infinite set of ‘non- 
isospectral’ or ‘additional’ symmetries of the KdV equation. These additional symmetries 
commute with the isospectral ones, i.e. the original flows of the KdV hierarchy, but do not 
commute among themselves. Instead, their generators satisfy part of the Virasoro algebra; 
the two transformations in (1.5) and (1.6) corresponding to the L-1 and LO generators, 
respectively. The connection between additional symmetries and the Virasoro algebra can 
be seen most clearly at the level of the tau-functions as discussed in [14] where it has been 
shown that they are generated by the infinitesimal transformations of the tau-function 

s H i = c + c L , r  ( 1.7) 

with m -1 and L,  being the generators of the Viasoro algebra acting in the appropriate 
Fock space. 

The additional (non-isospectral) symmetries of the KdV equation were first found in 
[15]. Similar symmetries have also been found in the Kadomtsev-Petviashvili (KP) equation 
and its hierarchy 1161 and in the Ablowitz-KaupNewellSegur (AKNS) system [17] leading 
to a general construction of non-isospectral symmetries of integrable hierarchies by the 
inverse-scattering method in [18] (see [13] for a more complete list of references). In all 
these cases, the generators of the additional symmetries satisfy a subalgebra of the Viasoro 
algebra suggesting that there is a natural action of (part of) the Viasoro algebra, or Diff(S’), 
on integrable hierarchies. 

More recently, there has been a renewed interest in the integrable hierarchies of 
partial-differential equations and their additional (non-isospectral) symmetries because of 
the important role they play in the matrix-model formulation of two-dimensional quantum 
and topological gravity (see [19] and references therein). In the continuum, or double- 
scaling limit, the partition function of the matrix models is a tau-function of an integrable 
hierarchyt. Furthermore, this tau-function is constrained by an additional equation known 
as the ‘string equation’ which turns out to be the condition that the relevant solution of 
the hierarchy is actually invariant under the additional symmemes [12]. As has been 
said previously, the generators of the additional symmetries satisfy a subalgebra of the 
Viasoro algebra and this is the reason why the smng equation appears as a set of Virasoro 
constraints on the matrix-model partition function [20,21]. On a slightly different tack. 
the Viasoro constraints also encode the contact terms of physical operators [22] in some 
two-dimensional topological field theories. These issues have motivated an investigation 
into the additional symmetries of the Drinfel’dSokolov A,-KdV hierarchies [12,23], and 
those of the KP hierarchy in [23,24]. 

In this paper, we shall discuss the additional symmetries of the zero-curvature hierarchies 
of [9-1 I] (some preliminary results have been presented in [Z]). It tums out that the origin 
of the additional symmetries and of the Virasoro action on the hierarchy is very natural. It 
is induced precisely by the semi-direct product of the Virasoro algebra with the affine Kac- 
Moody algebra in terms of which the hierarchy is defined. Furthermore, both the flows of the 
zero-curvature hierarchies and the generators of their additional symmetries are constructed 
in terms of the affine Kac-Moody algebra in a completely representation-independent way. 
It is also shown that the action of the symmetries on the tau-functions is precisely that of 
(1.7). In order to make the paper reasonably self-contained, we summarize in section 2 

t This also s e e m  to be true, in some cases, beiore lalcing the double-scaling limit 
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the main results of 19-1 I]. The expression for the generators of the additional symmetries 
are found in section 3 and they are shown to satisfy a subalgebra of the Virasoro algebra. 
Section 4 connects the results to the tau-function formalism, recovering the results of 1141. 
Finally, in section 5 ,  we propose a generalization of the ‘siring equation’ that selects the 
solution that is invariant under the additional symmetries. This can be taken as the starting 
point of an investigation into the possible relation between the generalized hierarchies and 
two-dimensional physical systems including quantum gravity. Our conventions and some 
properties of affine Kac-Moody algebras are presented in the appendix. 

T J Hollowood et a1 

2. The generalized zero-curvature hierarchies 

In this section, we summarize the main results of [9, 1 I], to which one should refer for 
further details. Our conventions concerning affine Kac-Moody algebras are summarized in 
the appendix of [ I l l .  

In [9], a generalized integrable hierarchy was associated with each untwisted affine Kac- 
Moody algebra g, a particular Heisenberg subalgebra s c g (whose associated gradation is 
s‘) and an additional gradation s such that 8 ri s’ with respect to a partial ordering (see the 
appendix). 

There is a Row of the hierarchy for each element of 6 of non-negative 8’-grade. This is 
the set ( b j ,  j E E > 0). The Rows are defined in terms of ‘Lax operators’ of the form 

a 
I - atj L, - - - b j - q ( j )  j E E 2 0  (2.1 ) 

where q ( j )  is a function of the tJs on the intersection 

QW = g>o(s) n (2.2) 

Here an expression like g,j(s) means the subspace of g with s-grade less than j .  In order 
to ensure that the flows are uniquely associated to elements of the set { b j ,  j E E > 0). we 
will demand that q ( j )  has no constant terms proportional to bi with i < j .  The integrable 
hierarchy of equations is defined by the zero-curvature conditions 

[Ci , Lj] = 0. (2.3) 

In general, the above system of equations exhibits a gauge invariance of the form 

Lj -+ ucJu-’ (2.4) 

preserving q ( j )  E Q ( j )  where U is a function on the group generated by the finite- 
dimensional subalgebra given by the intersection 

P = go(4 n (2.5) 

The equations of the hierarchy are to be thought of as equations on the equivalence of 
classes of Q( j )  under these gauge transformations. The gauge transformations include the 
case when U is just a function (related to the exponentiation of the centre of g). These last 
transformations can be used to set the component of q ( j )  in the centre of a. q c ( j )  to any 
arbitrary value; thus showing that it is not a dynamic degree of freedom but only a purely 
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gauge-dependent quantity so that the hierarchy is completely independent of the centre of 
0.  

A convenient choice for the gauge slice has been proposed in [ l l ]  and we shall use it 
in the following. With this gauge choice, the integrable hierarchy can be defined in terms 
of some 0 E U - ( s )  through the equations 

and 

Therefore, by comparison with (2 .1) ,  

q ( j )  = P>o[.q(Obj@-') - bj E Q ( j ) .  (2.8) 

Now, the zerwcurvature conditions (2.3) are just a consequence of the trivial identities 

a 
["-b .  ati I' q - b j ] = O  i , j E E ) O ,  

Equations (2.3) can be written in Hamiltonian form [ I O ]  

3. The additional symmetries 

The derivation of the additional symmetries of the hierarchy closely follows the arguments 
of [9] used to construct the flows of the hierarchy. The idea is to obtain new operators which 
commute with the Lax operators t i  but now allow for explicit dependence on the tjs. In 
particular, using the semi-direct product of the Viasoro algebra with g (see the appendix), 
we shall find an infinite number of operators commuting with the t i s  that depend on the 
tjs. Our procedure is quite similar to that of [18] (see also [26] and [23]).  As before, 
let us consider an affine Kac-Moody algebra 0, a given Heisenberg subalgebra 6 c g 
(whose associated gradation is 5') and an additional gradation s j s'. In what follows 
N. = C : = o k i ~ i  where ki are the Kac labels of g. We shall need the following two lemmas. 

Lemma 3.1. If ID$) + M ,  Lj ]  = 0 where M E 0 and 

then 

[a?' + P>o[.i(M), Ljl = -[P<o[si(M), Ljl E QW.  (3.2) 

Proof. The proof of this lemma proceeds by equating the grades of the left- and right-hand 
sides of (3.2) and taking into account that [e:), go(s)] = 0 and [a$). gzo(s)J 5 g>nN,+l(~). 
With this in mind, the s'-grade of the right-hand side is c j and the s-grade of the left-hand 
side is > min(0, n N ,  + 1). Since both sides must have the same grade, they actually lie 
in the intersection Q ( j )  if the value of n is restricted by (3.1) (recall that N B  = 1 only if 

0 s = Sh& otherwise, N8 > 1). 
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(3.3) 

where ct and A are arbitrary constants (E is not present if 0 
otherwise vanishing (notice that S, E g because Up' - DLd)  E g. see (A.4)). Then, 

E )  and e(x) = 1 if x z 0, 

(i)for anyn E %and j E E > 0 

[Dt) + s., Lj] = 0 (3.5) 

(ii) for any m, n E Z 

Proox The proof of (i)  follows from (2.6) and the identity 

s,. at, - bj = 0. F a  1 (3.7) 

The proof of (ii) is also straightforward by using (A.2) and 

(3.8) 
j 

NB' 
[3:) b.1 - --bj+,N,. , I -  

We now define the following set of derivations: 

-- a'(') - - [ p ~ O [ ~ ~ ( s n ) ~  ~ j c j ]  
ab. 

[;I ifs =shorn 

i f s  > shorn 
= + [a:' + P>O[.~(S,), 41 n E z > (3.9) 

where the equality follows from lemma 3.1. These derivations act on 0 as 

ao 
aPn 
-= P<O{~J(SO)@- (3.10) 

Obviously, as shown in lemma 3.1, aq(j)/a& E Q(j)  for the values of n indicated in 
(3.9); moreover, (3.10) is consistent with our gauge choice 0 E U&). 

The derivations in (3.9) actually define symmetries of the hierarchy since, as we shall 
prove in the following proposition. they commute with the flows of the hierarchy. 
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Proposition 3.3. The flows defined by (2.3) and the derivations defined by (3.9) commute. 

Proof. It will be sufficient to show that the flows and the new derivations commute acting 
on a generic Lax operator. Therefore, let us consider i .  j E E > 0. Then 

(3.11) 

which vanishes because of (3.7). 13 

Therefore, the new derivations (3.9) actually generate an infinite set of additional 
symmetries of the integrable hierarchy. But they do not provide additional flows because 
these new derivations do not commute among themselves. Instead, as expected, they close 
on a subalgebra of the Virasoro algebra. 

Proposition 3.4. The derivations (3.9) have the following commutation relations: 

(3.12) 

form. n constrained as in (3.9) 

Proof. 
a generic Lax operator. The result is 

Again, it will be sufficient to consider the commutator of two derivations acting on 

[&, $1 Lj + [ ~ < o [ a l ( [ ~ < O [ S i ( ~ m ) ,  o~0-11)- Lj)  + ~ < o [ a i ( ~ ) ,  [ p c o [ s l ( ~ m ) ,  4 1 1  

- [ P ~ o [ ~ I ( [ P < o I . I ( w ,  G m o - ' ~ ) ,  L j )  - [ P < o [ ~ I ( s ~ ) ,  [ P d [ s i ( s t x ) ,  L,II 

= [P<~[si(@Fmm%I@-'  - [om ( E ) ,  0, (a )  I), LjI (3.13) 

0 

Notice that the infinite set of additional symmetries generated by the equations (3.9) and 
(3.10) have been constructed in a completely representation independent fashion; although 
it is important to remember that these expressions are only valid in the special gauge chosen 
in section 2. 

For the sake of illustration, we shall write the generators of the first two additional 
symmetries in terms of the loopalgebra representation of g. L(g) = C [z, z-'1 8 g (the 

which, using (3.16) and (A.2). proves (3.12). 



4636 

central term c vanishes). In this representation, b, = -z"+'d/dz and D f ' )  is given by (A.4). 
Let us consider a generalized hierarchy of the Kdv type, i.e., one for which s = shorn. Then 

T J Hollowood et a1 

where, as before, 01 is not present if 0 6 I. Then, if k < NB,.  it is straightforward to write 
the first two generators as 

(3.15) 

and 

The first one generalizes the infinitesimal generator of the Galilean transformation of the 
KdV equation (1.5). In fact, in the particular case of the KdV equation, (3.15) is 

(3.17) 

which, taking t j  = 0 for j z 3, is just (1.5). Moreover, the result that the transformation 
generated by ,!-I is a symmetry only of hierarchies associated with s = shorn is the 
generalization of the well known fact that the KdV equation is Galilean invariant, whilst 
the MKdV equation (which has s = s' being the principal gradation) is not [Z]. 

In order to gain a better understanding of the transformation generated by ,90, let 
us specify the components of q ( k )  with respect to an s'-graded basis of Q(k):  q ( k )  = 
C,<Xq'(k)e,, with [Cr. e,] = re,. In terms of these components, (3.16) is 

which is the generator of a scaling transformation under which the scaling dimension of 
q'(k) is k - r and that of t j  ( j  # 0) is j .  This scaling symmetry of the generalized 
hierarchies has been already discussed in [lo]. In particular, (3.18) generalizes (1.6). 

4. Additional symmetries and tau-functions 

When g admits vertex-operator representations, some of the integrable hierarchies defined 
by equations (2.3) can be described using the tau-function formalism [ I  I]. In terms of 
the tau-functions, the hierarchy consists of an infinite set of bilinear equations known as 
Hirota equations and it is related to one of the integrable hierarchies constructed by Kac 
and Wakimoto [5]. Consequently, the additional symmetries generated by (3.9) and (3.10) 
can also be written as transformations of the corresponding tau-functions. 
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4.1. The tau-finction formalism 

For the sake of completeness, let us briefly review the construction of integrable hierarchies 
within the tau-function formalism and their connection with the zero-curvature hierarchies 
(for more details see [5 ,  11,141 or, in general, [4]). The tau-function z,, associated with 
an integrable highest-weight representation L(s )  of an affine Ka-Moody algebra g. is 
characterized by saying that it lies in the G-orbit of the highest-weight vector U, with G 
being the group associated with g. 

Let (ui) and [U') be dual bases of the larger algebra g @ @d with respect to the non- 
degenerate bi-linear form (. I .). It can be shown [5.27] that ra lies in the G-orbit of U, if, 
and only if, 

where A, is the eigenvalue of go(s) acting on us. Furthermore, the condition (4.1) is also 
equivalent to the statement that s, B r, E L(2s) .  It follows from the definition of the action 
of a group on a tensor product that, for the representation L(s) 

r, = 1 
i=O 

(4.2) 

where zj is the tau-function corresponding to the fundamental representation with sj = 8 j , j .  
When the representation L(s)  is a vertex-operator representation, (4.1) can be interpreted 

as a set of differential equations on the tau-functions. In fact, they are precisely the Hirota 
equations of an integrable hierarchy. Let us restrict ourselves to cases where g is the 
untwisted affinization of a simply-laced algebra (i.e., g is of A, D or E type). In that case, 
level-one representations (or basic representations, those for which sj = 8j,i for some i with 
unit Kac label) are isomorphic to the Fock space of any of the Heisenberg subalgebras of 
g which are classified by the conjugacy classes of the Weyl group of g. 

The Heisenberg subalgebra s,, associated with some element of the Weyl group (say, 
w up to conjugacy) is realized on the Fock space @[q; j E E > 01 in the standard way 

(4.3) 

A different treatment is required for the zero-graded elements of s,, which correspond to 
the invariant subspace of w .  These zero-modes are represented on the space 

C(Q) = Iexp(B. XO) ;  B E Q )  (4.4) 

where Q is the root lattice of g projected onto the invariant subspace of w ;  bo acts as a f a x o .  
The level-one representation is isomorphic to @[I,] B V where V = @ ( Q )  8 V is the 

zero-mode space. Here, V is an additional finite-dimensional vector space [8,28] which is 
trivial (dim(V) = 1) for the cases relevant to our discussion [I  11. The elements of g not in 
5, are the modes of vertex operators and the derivation daw is related to the zero-mode of 
the Sugawara current. 

Summarizing, the vertex-operator representation of L(s)  is realized on the tensor product 
of fundamental representations where si gives the multiplicity of the ith fundamental 



4638 

representation in the product (so any non-zero s, corresponds to ki = ky = I). They 
will be carried by a tensor product of the Fock spaces 

T J Hollowood et a1 

where x y )  indicates the Pock space variables of the ith space in the tensor product and 
x .  = EN. (i)  

I - ,=I  xj  ' 

In the tau-function formalism of [51. a hierarchy of Hirofa equations is associated with 
[g, w, s), i.e. a simply-laced finite Lie algebra g, an element w of the Weyl group of g (up 
to conjugacy) and a vertex-operator realization of L(s)  where si = 0 if ki # 1. Finally, the 
connection between the zero-curvature and the tau-function formalism is established by the 
following theorem. 

Theorem 4.1. (Theorem 5.1 of [ll].) There exists a map, from solutions of the Kac- 
Wakimoto hierarchy, associated with the data [g, w. s) (with the gradation associated with 
the Heisenberg subalgebra 5,  satisfying s 5 s, and also si # 0 only if ki = 1) and a 
Zero-curvature hierarchy associated with s' = s, given by 

e-' . U* = ra(x + t ) / r ~ o ) ( t )  (4.6) 

where 0 E V-(s) gives q(k) via (2.8) and r;'')(x) is the xo-independent component of r .  
i.e., the component corresponding to ,9 = 0 in (4.4). 

Notice that not all the zero-curvature hierarchies can be related to tau-functions (g has to 
be simply-laced and s must correspond to products of level-one representations). Conversely, 
not all the Kac-Wakimoto hierarchies can be related to zero-curvature hierarchies because 
of the condition s 5 s,. 

4.2. Additional symmetries of the tau-functions 

In a vertex-operator representation, the generators of the Virasoro algebra can be realized 
in terms of the elements of the Heisenberg subalgebra through the Sugawara construction 
(see, for example, 1291) 

(4.7) 

where : : indicates that the product of elements of s is 'normal-ordered'. Consequently, 
acting on the Fock space, the generators Ly) are second-order differential operators; it will 
be convenient to write them as Lp') = L f ) ( ( x i f ,  (a j ) )  where aj 

Taking into account (3.10) and (4.6). one can easily derive the action of the derivations 
(3.9) on the tau-functions 

a/axi. 
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Now, using (4.7), i t  is straightforward to see that 

(4.9) I 

sn H L: 'w~ ,  + r t~ .  {aj + ~ S , , ~ I )  + (i. - 5) 2N8t ~,.o. 

Therefore, 

(4.10) 

the x-independent part corresponding to PorBl(S,) U,. Now, the comparison of (4.8) and 
(4.10) allows one to prove the following proposition. 

Proposition 4.2. 
are generated by the derivations 

In the tau-function formalism, the additional symmetries of the hierarchy 

(4.11) a t m  
asn - = -V$'U~,I, I a j  + US,,OI) + fi.~.,o)rs(x) 

where 

and (Y is an arbitrary constant that is not present if 0 6 E .  In general, p is also an 
arbitrary constant but it has to vanish i f s  = Shorn as required by the commutation relation 
w a g l ,  a / a m  = waso. 

As we have discussed above, the vertex-operator representation of L ( s )  is realized 
on the tensor product of fundamental representations and the tau-function is also a tensor 
product of 'fundamental' tau-functions (4.2). Consequently, the derivations (4.1 1) act on 
these 'fundamental' tau-functions as 

a r; - = - ( ~ f ' ) ( { x j ~ ,  {a, + (~i8j.01) + p i ~ ~ . o ~ ; ( ~ )  (4.12) 
abfi 

with 
ifs, = Sj.0 Io' otherwise. 

n e Z >  (4.13) 

Of course, there is one equation for each component s, # 0 (having k; = 1). Again, oi 
and pi are arbitrary constants in general, but all the p,s have to vanish i f s  = shorn. These 
results agree with those obtained in  [141, where it has been proven that if zs is a solution 
of the Hirota equations (4.1), so is r, + ELnrB, E < I. 

Finally, let us check again, in this formalism, that the transformation generated by (4.12) 
with n = -1 actually generalizes the Galilean transformation of the KdV equation. For the 
KdV equation, w is the Coxeter element, a = A Y ) ,  s, = (1, l), s = (1,O) and there is only 
one (scalar) tau-function r .  Then, 

(4.14) 

Therefore, using equation (1.2), one recovers the action of this derivation OR the original 
variable of the KdV equation (3.17). 



4640 

5. Generalizing the string equation 

As explained in the introduction, one of the main recent motivations to study integrable 
hierarchies of partial-differential equations is their importance in the matrix-model 
formulation of two-dimensional quantum and topological gravity. For the multi-matrix 
model, after applying the double scaling limit 1301, the string equation has the general form 

T J Holbwood et a1 

~311 

[ & P , C ] = O  

where C is the Lax operator (in matrix form) of the A.-KdV hierarchy. 
Given that the zero-curvature hierarchies of [9-1 I] generalize the Drinfel'd-Sokolov 

hierarchies and share the same structure, it is very tempting to consider the possibility 
that some of them could also describe interesting physical systems coupled to quantum or 
topological gravity in a similar way. For that to be the case, then, at the very least, the 
hierarchy must admit a generalization of the string equation (5.1). 

The possibility of imposing additional constraints of the form (5.1) is ensured by the 
existence of the additional symmetries [12]. Recall that. in the loop-algebra representation, 
0. = -z"+'d/dz; hence, the invariance of the Lax operator under the infinitesimal generator 
(3.9) with n = -1 

for some Ck = L, is precisely a generalization of (5.1). Moreover, one can check that the 
condition 

P<O[S](~-.I) = 0 (5.3) 

is compatible with the hierarchy in the sense that it is preserved by all the flows. Obviously, 
it induces the constraint (5.2) and it is the natural choice for the 'generalized string equation' 
for any zero-curvature hierarchy of the Kdv typet. Moreover, when the hierarchy can be 
written in terms of tau-functions, the constraint (5.3) translates into an L-1 constraint for 
the (unique) tau-function 

L ! ~ I X ~ I ,  (aj +asj.onr = o (5.4) 

according to (4.11). 
It is well known that the string equation, together with the recurrence relations of the 

relevant hierarchy, induces an infinite set of Virasoro constraints [20,21]. In the generalized 
case we are discussing, the generalized string equation (5.3) also induces an infinite set of 
constraints. To prove this, we restrict ourselves again to the loop-algebra representation. 
The crucial observation is that S,, = zjS,,-j for any n, j E Z. Therefore, the generalized 
string equation (5.3) implies the following infinite tower of constraints 

P,O~~I(S.) = 0 n E Z > -1. (5.5) 

t If the hierarchy is not of the Kdv type, i.e., 8 # aho,,, then the natural generalization of the suing equation would 
be P<ot8,(So) = 0 in agreement with the wulu of the unifary m h i x  models. 
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Even though we have used the loop-algebra representation to prove (SS), the representation 
independence of the zero-curvature hierarchies and the fact that equations (5.3) and (5.5) 
are explicitly independent of the centre, ensure that the result IS completely general. On the 
tau-function, (5.5) are just the Virasoro constraints as expected 

~ Y ) ( [ ~ ~ j , [ a ~ + . ~ j . ~ ) ) r  = O  n > -1. (5.6) 
For the original case of the KdV hierarchy, which describes ordinw quantum gravity, 

the set of Virasoro constraints (5.6) are complete in the sense that they are equivalent to 
imposing the string equation (5.4) along with the fact that 5 is the tau-function of the 
hierarchy. For the more general hierarchies this is not the case and the generalized string 
equation plus the hierarchy is equivalent to the Virasoro constraints (5.6), as we have shown, 
plus some additional constraints. It is thought that these additional constraints satisfy a 
subalgebra of a W-algebra. The main evidence for this belief comes from the study of the 
KP hierarchy which contains the Drinfel'dSokolov A,-hierarchies as reductions. In this 
case, and using the Grassmannian approach, it has been proven that the string equation 
of the KP hierarchy induces an infinite. set of constraints satisfying a subalgebra of the 
Wl+,-algebra. Moreover, the algebra satisfied by the constraints reduces to a subalgebra 
of the classical W,-algebra when the KP hierarchy is reduced to the Drinfel'dSokolov 
A,-l-hierarchy [Zl]. Directly in terms of the Lax operator approach, and again considering 
reductions of the KP hierarchy, it has also been proven that the string equation induces an 
infinite set of constraints spanning a subalgebra of the classical W3-algebra in the case of 
the Drinfel'dSokolov Az-hierarchy [32]. 

The generalized string equation (5.3) does imply that the quantities P<O,~~(S,, . . . Smn) = 
0 for E:=, mi 2 -n; however, we have not managed to write these equations as constraints 
directly on the tau-function and show that it satisfies a W-algebra. It is clear, though, that 
these additional constraints are not related to additional symmetries of the hierarchyt. In 
the absense of a direct construction of the constraints on the tau-function we shall limit 
ourselves to some observations. 

First of all, let us point out that whatever the additional constraints are, they have 
to be consistent with the Viasoro constraints (5.6) and so form a closed algebra with 
this subalgebra of the Virasoro algebra. So, the most natural guess is that they satisfy a 
subalgebra of the W-algebra associated with the Casimirs of the relevant finite Lie algebra 
g, beiig realized in terms of the Heisenberg subalgebra 5 through a generalized Sugawara 
construction; the generators being differential operators Wn(BI)({xi), [a ,}) .  We shall now 
prove that these additional constraints would be compatible with the hierarchy. Let us 
consider 

R , . u , = o w , ( ~ ' ) ( [ ~ ~ ) , [ ~ ~ + ~ ~ ) ) o - ~ . u , = o  (5.7) 

which follows from a W-constraint on the tau-function 

w,(8') ({ai), [ X j ) )  . r8 = 0. (5.8) 

The time evolution of (5.7) is 

- - 'us  = O-w;q{ai), [ X j  + tj))O-' - [P<orsl(ObjO-'), ow,'"')({a,l, [ X j ) ) o - ' ]  .U, 

= [P>o[s](ObjO-'). RJ  U, = 0 

aRn atj  ( ij 1 
(5.9) 

t See [14] for similar comments about additional constmints and additional symmetries within the tawfunction 
approach. 
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for any n, where we have used that bj = a /ax j  for j E E 0 (5.7) and the fact that vs is 
annihilated by g,orsl and an eigenvector of gotal. Obviously, the reason for the consistency 
of (5.7) with the hierarchy is just the identity 

b,, wy)({ai], ( x j  + t , ] )  = o (5.11) 1 a 
[F - 

and, of course, we could add arbitrary constant elements of 5.  
In the absence of a proof, we conclude this section by making the natural conjecture 

that, for the cases where a tau-function formalism exists, the generalized string equation 
(5.3) induces an infinite set of conshaints on the tau-function which satisfy part of the 
W-algebra corresponding to the Casimius of g for which there is a tower of generators 
for each exponent of g. This conjecture can be taken as a starting point to investigate 
the possibility that some generalized integrable hierarchies could describe two-dimensional 
physical systems including quantum gravity [331. 
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Appendix 

In this appendix we review the semi-direct product of the Viason, algebra with g for 
arbihary g rotations. Our rotation and approach follows [34]. Let us choose a basis 
(E!:; i = 1, . . . , r ]  of the root space and 
m E Z and define the following set of derivations labelled by a gradation s: 

for n E Z # 0 and &+,a of E;+,,,& for a! E 

[ D m  ( E ) ,  E(')] ns = -nE(') (mtn)6 [Pg', h] = 0 

and 

These derivations span a Vuasoro algebra 

and (A.l), together with E', g] = 0, define the semi-directproduct of D i r  and g, sometimes 
denoted as 2%~ K g. 

Let (P,: n E Z) be the virasoro generators labelled by the homogeneous gradation. 
Then, it is easy to prove that [341 
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where H,'") is an element of gns such that [H,'"), E+i.ar,+ms] = 4~iE+~,+(,+.)s; with 
Hjo) = Hs an element of the Cartan subalgebra. Furthermore, Of) - Oy) E g. It follows 
from (A.4) that DO = -d and 
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