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1 Departamento de Fisica de Particulas, Universidad de Santiago, E-15706 Santiago de
Compostela, Spain

Received 25 November 1993

Abstract. The non-isospectral symmetries of a general class of integrable hierarchies are found
by generalizing the Galilean and scaling symmetries of the Konteweg—de Vries equation and its
hierarchy. The symmetries arise in a very natural way from the semi-direct product structure
of the Virasoro algebra and the affine Kac-Moody algebra underlving the construction of the
hierarchy. In particular, the generators of the symmetries are shown to satisfy a subalgebra of
the Virasoro algebra. When a tau-function formalism is available, the infinitesimal symmetries
act directly on the tau-functions as moments of Virasoro currents. Some comments are made
regarding the role of the non-isospectral symmetries and the form of the string equations in
matrix-mode] formulations of quantum gravity in two dimensions and related systems.

1. Introduction

Since the discovery of the soliton solution of the Korteweg—de Vries (KdV) equation

du 18 3 Ju

o 290 T 2%5%
much effort has been devoted to elucidating the nature of the integrability of soliton
hierarchies (see [1] for a nice discussion on the history of the theory of soliton equations,
and [2] for an introduction to integrable models). One of the more important and surprising
developments has been the recognition of the deep connection existing between integrable
hierarchies of nonlinear differential equations and infinite-dimensional Lie algebras. This
connection manifested itself in two apparently unconnected approaches.

In the ‘tau-function® approach, pioneered by the Japanese school [3,4], the equations
are cast in a particular bilinear or Hirota form by the use of a special set of variables—the
tau-functions. For instance, the original variable and the tau-function of the Kdv equation
are related—in standard convention—by the well known formula

(1.1)

2
dxt

It was clear, in the original work of [4], that the affine Kac-Moody algebras play a central
role in this approach but it was made even clearer by Kac and Wakimoto [5]. In this last
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wark, the authors constructed integrable hierarchies of equations in Hirota form associated
with vertex-operator representations of affine Kac-Moody algebras.

The other approach is inspired by the seminal work of Drinfel’d and Sokolov [6).
In their construction, the central objects are gauge fields in the loop-algebra of a finite
Lie algebra and the equations are the conditions of zero-curvature on these gauge fields.
In the original work of [6], the authors make use of the ‘principal’ gradation of the
loop-algebra in an essential way; in particular, the construction involves the ‘principal
Heisenberg subalgebra’. On the other hand, it is well known that the affine Kac-Moody
algebras have other inequivalent Heisenberg subalgebras [7,8], an observation that was
exploited in [9] (see also [10]) to construct more general integrable hierarchies. In fact,
it was shown in [11] that it is not necessary to be restricted to the loop-algebra and the
constructions of the hierarchies are completely representation independent; in particular,
they are independent of the centre. Moreover, when the affine Kac-Moody algebra has
a vertex-operator representation the zero-curvature hierarchies can be written in terms of
tau-functions [11] and hence a bridge can be established between the two approaches.

The purpose of this paper is to complete the description of the zero-curvature integrable
hierarchies of [9] by discussing their ‘additional’ or ‘non-isospectral’ symmetriesi. In
this context, a ‘symmetry’ is some transformation that relates one solution of an equation
with another solution of the same equation. Recall that, for example, the Kdv equation
has an infinite set of commuting symmetries, infinitesimally generated by the infinite set
of conserved Hamiltonians. Hence, because the existence of an infinite set of conserved
Hamiltonians is a necessary condition for integrability, any integrable nonlinear differential
equation has an infinite set of commuting symmetries; these are actually the ‘isospectral’
symmetries. The corresponding infinite set of infinitesimal generators are nothing but the
commuting flows defining the ‘integrable hierarchy’ associated with the original nonlinear
differential equation. In the case of the Kdv equation, the general form of these flows is

du

Bta41

= P (v, 8,u,8%,...) (1.3)

where t; = x, 5 = t and P is a polynomial function of 1 and its x-derivatives; the original
KdV equation corresponding to k¥ = 1. For each integer k£ > 1, (1.3} generates a symmetry
of the Kdv equation in the sense that if # is a solution then so is « + €du/dty4 € < 1.

However, the group of symmetries of the Kdv equation is known to be much bigger
still, since there exist the Galilean and scaling transformations

ulx, £) b 2x, 1) = ulx + o1, 1) + Ly -
1,
w(x, 1) = u(x, 1) =e¥ule’x, &)

respectively, for arbitrary values of v and r. When v and r are infinitesimal, one can write
them as

~ 2v /3 ou

u(x, 1) —ulx, )= ?(Eta'i-l) (1.5
~ ou du
u(x,t)—u(x,t)~r(x§+3t§+2u). (1.6)

t A symmetry is called either *isospectral’ or ‘non-isospectral’ according to whether it preserves or changes the
spectrum of the auxiliary linear problem associated with the nonlinear equation, respectively [12,13].
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Notice that, in contrast to the flows defined by (1.3), the right-hand sides of {(1.5) and (1.6)
involve x and ¢ explicitly in addition to «# and its x-derivatives (hence, the flows cannot”
be Hamiltonian). (1.5) and (1.6} are the first two generators of the infinite set of ‘non-
isospectral’ or ‘additional’ symmetries of the Kdv equation. These additional symmetries
comimute with the isospectral ones, i.e. the original flows of the Kdv hierarchy, but do not
commute among themselves. Instead, their generators satisfy part of the Virasoro algebra;
the two transformations in (1.5) and (1.6) corresponding to the L_; and Ly generators,
respectively. The connection between additional symmetries and the Virasoro algebra can
be seen most clearly at the level of the tau-functions as discussed in [14] where it has been
shown that they are generated by the infinitesimal transformations of the tau-function

T T=14¢€l,T (1.7

with m 2 —1 and L, being the generators of the Virasoro algebra acting in the appropriate
Fock space.

The additional (non-isospectral) symmetries of the KdV equation were first found in
[15]. Similar symmetries have also been found in the Kadomtsev—Petviashvili (KP) equation
and its hierarchy [16] and in the Ablowitz-Kaup-Newell-Segur (AKNS) system [17] leading
to a general construction of non-isospectral symmetries of integrable hierarchies by the
inverse-scattering method in [18] (see [13] for a more complete list of references). In all
these cases, the generators of the additional symmetries satisfy a subalgebra of the Virasoro
algebra suggesting that there is a natural action of (part of) the Virasoro algebra, or Diff(S!),
on integrabie hierarchies.

More recently, there has been a renewed interest in the integrable hierarchies of
partial-differential equations and their additional (non-isospectral) symmetries because of
the important role they play in the matrix-model formulation of two-dimensional quantum
and topological gravity (see [19] and references therein). In the continuum, or double-
scaling limit, the partition function of the matrix models is a tau-function of an integrable
hierarchyt. Furthermore, this tau-function is constrained by an additional equation known
as the ‘string equation’ which turns out to be the condition that the relevant solution of
the hierarchy is actually invariant under the additional symmetries [12]. As has been
said previously, the generators of the additional symmetries satisfy a subalgebra of the
Virasoro algebra and this is the reason why the string equation appears as a set of Virasoro
constraints on the matrix-model partition function {20,21]. On a slightly different tack,
the Virasoro constraints also encode the contact terms of physical operators [22] in some
two-dimensional topological field theories. These issues have motivated an investigation
into the additional symmetries of the Drinfel’d-Sokolov A,-Kdv hierarchies [12,23], and
those of the KP hierarchy in [23,24].

In this paper, we shall discuss the additional symmetries of the zero-curvature hierarchies
of [9-11] (some preliminary results have been presented in [25]). It turns out that the origin
of the additional symmetries and of the Virasoro action on the hierarchy is very natural. It
is induced precisely by the semi-direct product of the Virasoro algebra with the affine Kac—
Moody algebra in terms of which the hierarchy is defired. Furthermore, both the flows of the
zero-curvature hierarchies and the generators of their additional symmetries are constructed
in terms of the affine Kac-Moody algebra in a completely representation-independent way.
It is also shown that the action of the symmetries on the tau-functions is precisely that of
(1.7). In order to make the paper reasonably self-contained, we summarize in section 2

1 This also seems to be true, in some cases, before taking the double-scaling limit.
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the main results of [9-11]. The expression for the generators of the additional symmetries
are found in section 3 and they are shown to satisfy a subalgebra of the Virasoro algebra.
Section 4 connects the results to the tau-function formalistn, recovering the results of {14].
Finally, in section 5, we propose a generalization of the ‘string equation’ that selects the
solution that is invariant under the additional symmetries. This can be taken as the starting
point of an investigation into the possible relation between the generalized hierarchies and
two-dimensional physical systems including quantum gravity. Our conventions and some
properties of affine Kac—Moody algebras are presented in the appendix.

2. The generalized zero-curvature hierarchies

In this section, we sumimarize the main results of [9, 11], to which one should refer for
further details. Qur conventions concerning affine Kac—Moody algebras are summarized in
the appendix of [11].

In [9], a generalized integrable hierarchy was associated with each untwisted affine Kac—
Moody algebra g, a particular Heisenberg subalgebra s C g (whose associated gradation is
&'y and an additional gradation s such that 8 < 8" with respect to a partial ordering (see the
appendix).

There is a flow of the hierarchy for each element of s of non-negative 8'-grade. This is
the set {b;, j € E 2 0}. The flows are defined in terms of ‘Lax operators” of the form

] . .
L= —bi—gq(j) JEEZO0 .10
atj

where ¢ (j) is a function of the ;s on the intersection
Q3 = g30(8) Ng,;(3). (2.2)

Here an expression like g.;(s) means the subspace of g with s-grade less than j. In order
to ensure that the flows are uniquely associated to elements of the set {b;, j € E = 0}, we
will demand that ¢(j) has no constant terms proportional to b; with { < j. The integrable
hierarchy of equations is defined by the zero-curvature conditions

[, £j) =0, @3)
In general, the above system of equations exhibits a gauge invariance of the form
L; = ULU™! (2.4)

preserving g(j) € @{j) where U is a function on the group generated by the finite-
dimensional subalgebra given by the intersection

P = gy(s) Ng (5. (2.5)

The equations of the hierarchy are to be thought of as equations on the equivalence of
classes of Q() under these gauge transformations. The gauge transformations include the
case when U is just a function {related to the exponentiation of the centre of g). These last
transformations can be used to set the component of g{j) in the centre of g, g.(j) to any
arbitrary value; thus showing that it is not a dynamic degree of freedom but only a purely
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gauge-dependent quantity so that the hierarchy is completely independent of the centre of
.

A convenient choice for the gauge slice has been proposed in [11] and we shall use it
in the following. With this gauge choice, the integrable hierarchy can be defined in terms
of some © € U_(s) through the equations

] ] 4
L, = o +0 (33} b,) e (2.6)
and
00 _1 .
o = ~P<as)(®5;,07)0 JeE2O. 2.7)
S

Therefore, by comparison with (2.1),
9(j) = Poora)(©5;07") — b; € Q(j). (2.8)

Now, the zero-curvature conditions (2.3) are just a consequence of the trivial identities

3 d
—_——h - — A | = F7 = 0. .
[a},‘i b;, atj b":l =0 L JEe E/O (29)

Equations (2.3} can be written in Hamiltonian form [10].

3. The additional symmetries

The derivation of the additional symmetries of the hierarchy closely follows the arguments
of [9] used ta construct the flows of the hisrarchy. The idea is to obtain new operators which
commute with the Lax operators £; but now allow for explicit dependence on the #;s. In
particular, using the semi-direct product of the Virasoro algebra with g (see the appendix),
we shall find an infinite number of operators commuting with the £;s that depend on the
t;s. Our procedure is quite similar to that of [18] (see also [26} and [23]). As before,
let us consider an affine Kac—-Moody algebra g, a given Heisenberg subalgebra s C g
(whose associated gradation is 8"} and an additional gradation s < s'. In what follows
Ny = Z[;o kys; where k; are the Kac labels of g. We shall need the following two lemmas.

Lemma3.1. K0+ M,L;]=0 where M € g and

—‘1 f = m
nez>{ 8= Sha 3.1)
0 if 3 > Spum
then
08 + Pogray (M), £;] = —[Pegiy(M), £;1 € Q). (3.2)

Proof. The proof of this lemma proceeds by equating the grades of the left- and right-hand
sides of (3.2) and taking into account that [0, gg(3)} = 0 and [0%”, g5(8)] € Fonw,+1(8)-
With this in mind, the s’-grade of the right-hand side is < j and the s-grade of the left-hand
side is 2 min(0, n N, + 1). Since both sides must have the same grade, they actually lie
in the intersection Q(j) if the value of » is restricted by (3.1} (recall that N, = 1 only if
8 = Syom; Otherwise, Ny > 1). [
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Lemma 3.2, For any n € Z, let us define

5, =050 —d¥cg (3.3)
where
~ - i .- o
Se=0 4 3 N—srfjbﬁnw + N_s'b"‘v’”

jeE=0
] :
+e 3 Jkyte+ |nlatimn, [8(—n)+ Mno (3.4)
2Ng
JHk+aN =0
JheES0

where o and A are arbitrary constants (o is not present if 0 ¢ E) and 8(x) = 1 ifx > 0,
otherwise vanishing (notice that S, € g because 2% — o) € g, see (A.4)). Then,
(iyforanyneZand je E20
[0 + Su, £;] =0 (3.5)

(ii) forany m,n € &

~ - o? e
BSm.5n] = (m — ) (Sm+n - [A - m] 5m+n.0) + -1-”im(ﬂ'!2 = Déptn,0- 3.6

Proof. The proof of (i) follows from (2.6) and the identity
5 i b =0 (3.7
sﬂv BIJ J — M 4 }
The proof of (ii} is also straightforward by using (A.2) and
(s') — 7
" bl = = 5=bjsmn, - (3.8)
8?

We now define the following set of derivations:

aq(j
aiﬁfl = —[Pagiei(S2), £5]
= + [0 + Paopai(Sn), £ ez>{ _ 39
[ ?,0[.9]( ) ,r] n = 0 T Shom ( )
where the equality follows from lemma 3.1. These derivations act on © as
e
rvaia P<Ols}(Srz)@~ (3—]0)
0B,

Obviously, as shown in lemma 3.1, 3¢{j)/88, € Q(j} for the values of n indicated in
(3.9); moreover, (3.10) is consistent with our gauge choice @ € U_(s).

The derivations in (3.9) actually define symmetries of the hierarchy since, as we shall
prove in the following proposition, they commute with the flows of the hierarchy.
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Proposition 3.3.  The flows defined by (2.3) and the derivations defined by (3.9) commute.

Progf. It will be sufficient to show that the flows and the new derivations commute acting
on a generic Lax operator. Therefore, let us consider i, j € £ > 0. Then

-?u—‘:"—.c-~P ep;0™), [P S.), L
PR j = [P ojs) (©5;O7 ), [P (Sn), £5]]

+ [P <o1s ([P <0141 (Sa). ©5;©07)), £}

[ a7,
+ | Peopa) (GB—:@)'I) . Cj] — [Peoia)(Sn), [Pojs) (@507, £;]]
=~ [Poe) ([P<0e) (@5, 07, ©3,07')), L]
a ~
= — FP,_()[‘;] (@ [5 —b;,s,,] 6_1),[:}'] (3.11)
which vanishes because of (3.7). [

Therefore, the new derivations (3.9) actually generate an infinite set of additional
symumetries of the integrable hierarchy. But they do not provide additional flows because
these new derivations do not commute among themselves. Instead, as expected, they close
on a subalgebra of the Virasoro algebra.

Proposition 3.4. The derivations (3.9) have the following commutation relations:

a 2 d

for m, n constrained as in (3.9).

Proof.  Again, it will be sufficient to consider the commutator of two derivations acting on
a generic Lax operator. The resuit is

d d .
[W’ ﬁ] £ = +[Pors)([P<ois)(Sm) 85,0771, £;) + [Porer (S [Poe)(Sm), £51]

- [P-:O{s]([P-cO[s] (Sn); egm@u]])s ﬁ;) - [P<0ls](Sm), [Pd)[s](Sn)r ‘Cj]]

= [Poois (O, 51071 — [0, 0D, £)] (3.13)
which, using (3.16) and (A.2), proves (3.12). |

Notice that the infinite set of additional symmetries generated by the equations (3.9) and
(3.10) have been constructed in a completely representation independent fashion; although
it is important to remember that these expressions are only valid in the special gauge chosen

in section 2.
For the sake of illusiration, we shall write the generators of the first two additional

symmetries in terms of the loop-algebra representation of g, L(g) = Clz,z"')1 ® g (the
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central term ¢ vanishes). In this representation, 0, = —z**1d/dz and fo’] is given by (A.4).
Let us consider a generalized hicrarchy of the Kdv type, i.e., one for which 8 = 8em. Then

Pygra)(S-1) = Z Ny ——1;P501(©F;_y, 07 1)
JeE=G
(3.14)

P>o1e1(S0) = Z

JEE=DQ

tJPm[s](@bJ@ ) -—_— + —bo

Ne Ny

where, as before, « is not present if O & I. Then, if ¥ < Ny, it is straightforward to write
the first two generators as

dg(k} j , dqk}
I L —(b +gk)) — —[r Poje)(Bj—ny )s L4]
3p-1 JEE=Ny Ne 7 8tj-n, 0<1§<N3 N J#
(3.15)
and
dq (k) [ d Hy ] J  9qk) o dg(k)
- ==z + — g(k) +— k) + =t +— . (316
%o &z N7 d J;o Ne ' 81; | Ny 81 )

The first one generalizes the infinitesimal generator of the Galilean transformation of the
Kdv equation (1.5), In fact, in the particular case of the Kdv equation, (3.15) is

du ( 1) du
——= J+ o 1t +1 G.17
8f-1 ;ezz;n 2 Bt

which, taking ¢; = 0 for j > 3, is just (1.5). Moreover, the result that the transformation
generated by f_; is a symmetry only of hierarchies associated with 8 = Spon is the
generalization of the well known fact that the Kdv equation is Galilean invariant, whilst
the MKdV equation (which has 2 = 8’ being the principal gradation) is not [2].

In order to gain a better understanding of the transformation generated by B, let
us specify the components of g(k) with respect to an s'-graded basis of Q(k): gq(k) =
Y < g (Ker, with [dy, e,] = re,. In terms of these components, (3.16) is

aq" (k) J , 9g" (k) . o dg" (k)
—-—= =1 + g k) +— (3.18)
which is the generator of a scaling transformation under which the scaling dimension of
g"(k) is k — r and that of £ (j ¥ 0) is j. This scaling symmetry of the generalized
hierarchies has been already discussed in [10). In particular, (3.18) generalizes (1.6).

4. Additional symmetries and tau-functions

When g admits vertex-operator representations, some of the integrable hierarchies defined
by equations (2.3) can be described using the tau-function formalism (11]. In terms of
the tau-functions, the hierarchy consists of an infinite set of bilinear equations known as
Hirota equations and it is related to one of the integrable hierarchies constructed by Kac
and Wakimoto [5]. Consequently, the additional symmetries generated by (3.9) and (3.10)
can also be writien as transformations of the corresponding tau-functions.
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4.1. The tau-function formalism

For the sake of completeness, let us briefly review the construction of integrable hierarchies
within the tau-function formalism and their connection with the zero-curvature hierarchies
(for more details see [5,11, 14] or, in general, [4]). The tau-function z;, associated with
an integrable highest-weight representation L{s) of an affine Kac-Moody algebra g, is
characterized by saying that it lies in the G-orbit of the highest-weight vector v, with G
being the group associated with g.

Let {u;} and {u'} be dual bases of the larger algebra g @ Cd with respect to the non-
degenerate bi-linear form (- | -}. It can be shown [5,27] that t, lies in the G-orbit of v, if,
and only if,

3w @u (e ®74) = (Ao | As)Ts @ T (4.1

where A, is the eigenvalue of gy(8) acting on v,. Furthermore, the condition (4.1) is also
equivalent to the statement that t, ® 7, € L(2s). It follows from the definition of the action
of a group on a tensor product that, for the representation L(s)

Ty = ®{rf®‘-} (4.2
i=0

where 7; is the tau-function corresponding to the fundamental represeatation with s; = §; ;.

When the representation L{s) is a vertex-operator representation, (4.1) can be interpreted
as a set of differential equations on the tau-functions. In fact, they are precisely the Hirota
equations of an integrable hierarchy. Let us restrict ourselves to cases where g is the
untwisted affinization of a simply-laced algebra (i.e., g is of A, D or E type). In that case,
level-one representations (or basic representations, those for which s; = §;; for some i with
unit Kac label) are isomorphic to the Fock space of any of the Heisenberg subalgebras of
g which are classified by the conjugacy classes of the Weyl group of g.

The Heisenberg subalgebra s,, associated with some element of the Weyl group (say,
w up to conjugacy) is realized on the Fock space Clx;; j € E > 0] in the standard way

(4.3)

a/8 for j =0
c=1 and _,-=[/x1 /

|jIJC|j| fOI’j < Q.

A different treatment is required for the zero-graded elements of s,,, which correspond to
the invariant subspace of w. These zero-modes are represented on the space

C(Q) = {exp(B - xo0); B € 2} (4.4)

where ¢ is the root lattice of g projected onto the invariant subspace of w; by acts as §/3xg.

The level-one representation is isomorphic to Clx;1® V where V = C(Q) @ V is the
zero-mode space. Here, V is an additional finite-dimensional vector space [8,28] which is
trivial (dim(V) = 1} for the cases relevant to our discussion [11]. The elements of g not in
6y are the modes of vertex operators and the derivation d,, is refated to the zero-mode of
the Sugawara current.

Summarizing, the vertex-operator representation of L(s) is realized on the tensor product
of fundamental representations where s; gives the multiplicity of the ith fundamental
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representation in the product (so any non-zero s, corresponds t0 k; = k7 = 1}. They
will be carried by a tensor product of the Fock spaces

Ny

Tz, j e E> 01@ V) (4.5)

i=1

where xﬁ” indicates the Fock space variables of the ith space in the tensor product and
= § N (@)
Xp= X

In tf;e tau-function formalism of [5], a hierarchy of Hirota equations is associated with
{g,w, 8}, i.e. a simply-laced finite Lie algebra g, an element w of the Weyl group of g (up
to conjugacy) and a vertex-operator realization of L{g) where 5; = 0 if k; 5 1. Finally, the
connection between the zero-curvature and the tau-function formalism is established by the

following theorem.

Theorem 4./. (Theorem 5.1 of [11].) There exists a map, from solutions of the Kac-
Wakimoto hierarchy, associated with the data {g, w, 8} (with the gradation associated with
the Heisenberg subalgebra s, satisfying 8 < 38, and also s; # O only if §;, = 1) and a
zero-curvature hierarchy associated with 8" = 8, given by

@7y, = (e + 3/7OW (4.6)

where @ ¢ U_(s) gives q(k) via (2.8) and z(x) is the xo-independent component of T,
i.e., the component corresponding to 8 = 0 in (4.4).

Notice that not all the zero-curvature hierarchies can be related to tau-functions (g has to
be simply-laced and s must correspond to products of level-one representations). Conversely,
not all the Kac—Wakimoto hierarchies can be related to zero-curvature hierarchies because
of the condition s = 3,.

4.2. Additional symmetries of the tau-functions

In a vertex-operator representation, the generators of the Virasoro algebra can be realized
in terms of the elements of the Heisenberg subalgebra through the Sugawara construction
(see, for example, [29])

1
2N,

a‘,(:') > LE‘-!'] - Z y b[bj o n0

' i f=nNy

4.7

1
g =—=) j(Ng—=j)
¢ 4N§,; g

where : : indicates that the product of elements of 5 is ‘normal-ordered’. Consequently,
acting on the Fock space, the generators L{” are second-order differential operators; it will
be convenient to write them as L7 = L@ ({x;}, {;}) where & = 3/8x;.

Taking into account {3,10) and (4.6, one can easily derive the action of the derivations
(3.9) on the tau-functions

901
9fx

1 Atg(x 41 t(x+ 03100

.y, = —©°lp Sa) - vs =
. <0161(Sn) @y 9B, OnOR 98

(4.8)
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Now, using (4.7), it is straightforward to see that

2
5o L + ), {8 + @d,ob) + (l - )ﬁn.o- {4.9)
2Ng
Therefore,
Sp- Vs = Pep(S,) Vo = (@3';19_1 - ogs)) * Uy
1

2
- ()1 . _x _
= e m@ [L,, ({x; + 2310, + b o}) + (JL 2st) 6,,‘0} Ta(x + 1) — 14800

(4.10)

the x-independent part corresponding to Pyja{S.) * vs. Now, the comparison of (4.8) and
(4.10) allows one to prove the following proposition.

Proposition 4.2. In the tau-function formalism, the additional symmetries of the hierarchy
are generated by the derivations

a1 (x .
—513(—) = L), 18, + a8,0]) + 1m0 Ts(x) @.11)
n
where
ReT> —1 ffs:shom
0 if @ > 8pom

and o is an arbitrary constant that is not present if 0 € E. In general, g is also an
arbitrary constant but it has to vanish if 8 = 8y, as required by the commutation relation

[3/2B1, 8/8B_1] = 28/3fo.

As we have discussed above, the vertex-operator representation of L(s) is realized
on the tensor product of fundamental representations and the tau-function is also a tensor
product of ‘fundamental’ tau-functions (4.2). Consequently, the derivations (4.11) act on
these ‘fundamental’ tau-functions as

31" 2
a—’j = —(LF ({x;}, {8, + @:8;.01) + pidno)ui (x) (4.12)
n
with
nEZ?{_l if 55 = dj0 (4.13)
0 otherwise.

Of course, there is one equation for each component s, # 0 (having k; = 1). Again, o;
and u; are arbitrary constants in general, but all the p,s have to vanish if 8 = Spem. These
results agree with those obtained in [14], where it has been proven that if T, is a solution
of the Hirota equations (4.1), 50 is 7, + €L, € € L.

" Finally, let us check again, in this formalism, that the transformation generated by (4.12)
with r = —1 actuaily generalizes the Galilean transformation of the XKdv equation. For the
Kdv equation, w is the Coxeter element, g = AP 8y = (1,1), 8 = (1, 0) and there is only
one (scalar) tau-function v. Then,

e (Z(H Dt ? +t‘2)r (4.14)
55 .- Pyt T .
-1 \;Go U om 4
Therefore, using equation (1.2), one recovers the action of this derivation on the original
variable of the Kdv equation (3.17).
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5. Generalizing the string equation

As explained in the introduction, one of the main recent motivations to study integrable
hierarchies of partial-differential equations is their importance in the matrix-model
formulation of two-dimensional quantum and topological gravity. For the multi-matrix
model, after applying the double scaling limit [30], the string equation has the general form
[31]

[i -P,ﬁ:] =0 (5.1)
az

where £ is the Lax operator (in matrix form) of the A,-KdV hierarchy.

Given that the zero-curvature hierarchies of [9-11] generalize the Drinfel’d-Sckolov
hierarchies and share the same structure, it is very tempting to consider the possibility
that some of them could also describe interesting physical systems coupled to quantum or
topological gravity in a similar way, For that to be the case, then, at the very least, the
hierarchy must admit a generalization of the string equation (5.1).

The possibility of imposing additional constraints of the form (5.1) is ensured by the
existence of the additional symmetries [12]. Recall that, in the loop-algebra representation,

0, = —z”*td/dz; hence, the invariance of the Lax operator under the infinitesimal generator
(3.9) with n = ~1
3L, d
~ =+ Peoe(S-0) L | =0 5.2
35, [dz + Poge)(S-1) k] (53.2)

for some L = L, is precisely a generalization of (5.1). Moreover, one can check that the
condition

P.os1(5-1) =0 (5.3)

is compatible with the hierarchy in the sense that it is preserved by afl the flows. Obviously,
it induces the constraint (5.2) and it is the natural choice for the ‘generalized string equation’
for any zero-curvature hierarchy of the Kdv type]. Moreover, when the hierarchy can be
written in terms of tau-functions, the constraint (5.3) translates into an L_; constraint for
the (unique) tau-function

L& (x}, (8 + 8ol =0 (5.4)

according to (4.11).

It is well known that the string equation, together with the recurrence relations of the
relevant hierarchy, induces an infinite set of Virasoro constraints {20, 21]. In the generalized
case we are discussing, the generalized string equation (5.3) also induces an infinite set of
constraints. To prove this, we restrict ourselves again to the loop-algebra representation.
The crucial observation is that S, = z/ S, ;j for any n, j € Z. Therefore, the generalized
string equation (5.3) implies the following infinite tower of constraints

Po(e)(Sn) = 0 neZ>-1 (5.5)

t If the hierarchy is not of the Kav type, i.e., 8 # 8hom then the natural generalization of the string equation would
be P.gig(Se} = O in agreement with the results of the unitary matrix models.
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Even though we have used the loop-algebra representation to prove (5.5), the representation
independence of the zero-curvature hierarchies and the fact that equations (5.3) and (5.5)
are explicitly independent of the centre, ensure that the result 1s completely general. On the
tau-function, (5.5) are just the Virasoro constraints as expected

L), (8 +adodr=0  n2-l, (5.6)

For the original case of the Kdv hierarchy, which describes ordinary quantum gravity,
the set of Virasoro constraints (5.6} are complete in the sense that they are equivalent to
imposing the string equation (5.4) along with the fact that v is the tau-function of the
hierarchy. For the more general hierarchies this is not the case and the generalized string
equation plus the hierarchy is equivalent to the Virasoro constraints (5.6), as we have shown,
plus some additional constraints. It is thought that these additional constraints satisfy a
subalgebra of a W-algebra, The main evidence for this belief comes from the study of the
KP hierarchy which contains the Drinfel’d-Sokolov Ap-hierarchies as reductions. In this
case, and using the Grassmannjan approach, it has been proven that the string equation
of the KP hierarchy induces an infinite set of constraints satisfying a subalgebra of the
Wi o-algebra. Moreover, the algebra satisfied by the constraints reduces to a subalgebra
of the classical W,-algebra when the KP hierarchy is reduced to the Drinfel’d-Sckolov
Ap-y-hierarchy {211. Directly in terms of the Lax operator approach, and again constdering
reductions of the KP hierarchy, it has also been proven that the string equation induces an
infinite set of constraints spanning a subalgebra of the classical Wy-algebra in the case of
the Drinfel’ d-Sokolov Aj-hierarchy [32].

The generalized string equation (5.3) does imply that the quantities P.ojgj(Sm, - - - Sm, } =
0 for 3}, m; 2 —n; however, we have not managed to write these equations as constraints
directly on the tau-function and show that it satisfies a W-algebra. It is clear, though, that
these additional constraints are not related to additional symmetries of the hierarchyt. In
the absense of a direct construction of the constraints on the tau-function we shall limit
ourselves to some observations.

First of all, let us point out that whatever the additional constraints are, they have
to be consistent with the Virasoro constraints (5.6) and so form a closed algebra with
this subalgebra of the Virasoro algebra. So, the most natural guess is that they satisfy a
subalgebra of the W-algebra associated with the Casimirs of the relevant finite Lie algebra
g2, being realized in terms of the Heisenberg subalgebra s through a generalized Sugawara
construction; the generators being differential operators W ({x;}, {8;}). We shall now
prove that these additional constraints would be compatible with the hierarchy. Let us
consider

Ry vs = OW® ({3}, {x; +4)) @71 v, =0 (5.7)
which follows from a W-constraint on the tau-function
W ({8} (53} - 1 = 0. (5.8)

The time evolution of (5.7) is

i1 3 — - ? -
aaf e = (egwf”({af},{x,-uf})@ b [Pt (©5,071), OWE (3], {x;)© ‘1)-:;.9
i J

= [P35 (©5;87 1), R,] - 05 = 0 5.9

 See [14] for similar comments about additional constraints and additional symmetries within the tau-function
approach.
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for any n, where we have used that b; = 8/3x; for j € £ > 0 (3.7) and the fact that v, is
annihilated by g, and an eigenvector of gg,). Obviously, the reason for the consistency
of (5.7) with the hierarchy is just the identity

[% —b;, W (B}, [x; + r,-})] =0 (5.11)
7

and, of course, we could add arbitrary constant elements of 5.

In the absence of a proof, we conclude this section by making the natural conjecture
that, for the cases where a tau-function formalism exists, the generalized string equation
(5.3) induces an infinite set of constraints on the tau-function which satisfy part of the
Wh-algebra corresponding to the Casimirs of g for which there is a tower of generators
for each exponent of g. This conjecture can be taken as a starting point to investigate
the possibility that some generalized integrable hierarchies could describe two-dimensional
physical systems including quantum gravity {33].
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Appendix

In this appendix we review the semi-direct product of the Virasoro algebra with g for
arbitrary g rotations. OQur rotation and approach follows {34). Let us choose a_basis
(E9. i =1,...,r} of the root space g; for n € Z 5 0 and Eqyms of g}, ms fOr o € A and

m € Z and define the following set of derivations labelled by a gradation s:

[0, EQ) = —nEG,ys  .51=0

s (A1)
0%, Esq,ns] = — (ﬂ x F's) Eig, t(mn)s i=1...,r
and
B30, 2] = m =m0 + 2O ~ Do (42
These derivations span a Virasoro algebra
Vir = EHCo® (A3)

mel

and (A.1), together with [€,, g] = 0, define the semi-direct product of Bir and g, sometimes
dencted as Yir o< g.

Let {0,;n € Z) be the Virasoro generators labelled by the homogeneous gradation.
Then, it is easy to prove that [34]

HY  (Hy | Hy)
AR T (Ad)

'0,(1‘9) =0, —




Additional symmetries of generalized integrable hierarchies 4643

where H{ is an element of g,; such that [H{, Espims] = :I:s,-,E:‘ia,+(m+,,),g; with
H® = H, an element of the Cartan subalgebra. Furthermore, 0 — 0 € g. It follows
from (A.4) that 9o = —d and

do | (HilHy)

o —
¢ N, 2N?

(A.5)
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